
SAFEONECHAIN.COM

BLOCKCHAIN TECHNOLOGY

t.me/SafeOneChain

t.me/SafeOneChain

 Value transfer between smart contracts on a distributed blockchain plat-
form on the base of Proof of Stake validation.

ABSTRACT

 In a year in which economic turmoil dictates the days circumstances ad-
vance more than ever, it is necessary to apply the use of technologies that
facilitate their development, which is why SafeOne Chain proposes a tech-
nology infrastructure enabled for the development of Smart contracts and
Dapps with a PoS consensus system that makes it highly competitive and
secure without high energy cost. Blockchain-enabled smart contracts that
employ proof-of-stake validation for transactions promise significant per-

SafeOne Chain smart contract framework that targets application suitabili-
ty and industry best practices.

SafeOnesmart contract development plans for 100% rug/scam secured in-
dustry case applications.

t.me/SafeOneChain

INTRODUCTION

 Industrial revolutions have been characterized by bringing with Industrial revolutions have been characterized by bringing with
them disruptive products and technologies that have marked and
changed people's daily lives, becoming more and more comfortable for
their beneficiaries. Such technologies coming always with a price of
security issues what SafeOne is aiming to resolve through state of
the art POS blockchain technology and insurance industry like vetting
Praxis with unique security products like Tokenized insurance policy’s
and anonymous payment solutions. This is the need of the day and
the way to guide us to mass adoption.

Security is the first aim of any governance, in our blockchain con-
cept it will have no different position asjust in real life.

Blockchain technology is considered one of these technologies that
brings the 4.0 tech era along with loT and Al technologies, since it offers
transactional and communication
methods between P2P peers, passing through a decentralized system methods between P2P peers, passing through a decentralized system
and with high standards in security levels and is seen to be higer than till
date used systems.

The orchestration and choreography protocols that facilitate, verify and The orchestration and choreography protocols that facilitate, verify and
promulgate with computing means a negotiated agreement between the
consenting parties, they are called smart contracts. The latter initially find
application in various domains such as, for example, financial technology
[6], Internet of Things (loT) applications [33], digital signage solutions [11].
An essential aspect of smart contracts is a decentralized validation of
transactions, initially using the so-called proof of work (PoW) [42]. The core
technology that enables smart contracts is a distributed public ledger
called the blockchain, which records transaction events without requiring
a trusted central authority. Blockchain technology spreads in popularity
with the inception of Bitcoin [23], a peer-to-peer (P2P) payment and cryp-
tocurrency system comprising a limited set of operations at the protocol
layer. Bitcoins use PoW for transaction validation which is computationally
expensive and electricity intensive. POS is the up to date solution of an
modern and economic traditional system.

t.me/SafeOneChain

 For example, an inability to automate information logistics between organiza-
tions, the lack of privacy protection differentiations between external vs. related
internal private contracts, secure and stable virtual machines for blockchains with
better- performing proof-of-stake transaction validation [2], formally verifiable
smart contract languages, lite wallets that do not require downloading the entire
blockchain and mobile device solutions for smart contracts with simple payment
verification (SPV) [14].

 The latter means that clients simply download block headers when connecting to The latter means that clients simply download block headers when connecting to
an arbitrary full node [23]. While SafeOne Chain uses the Ethereum Virtual Ma-
chine (EVM) for a current lack of more suitable alternatives, according to [19], the
EVM has shortcomings such as previously experienced attacks against poorly han-
dled exceptions and against dependencies such as for transaction requests, time-
stamps, etc. It is also desirable that a smart contract system achieves the scalabil-
ity of the industry with the employment of sidechains [10] and outputs of unspent

such as Bitcoins [23] or Colored Coins [36].This whitepaper addresses the gap by
specifying SafeOne Chains framework for smart contract systems that answers
the question of how to develop a smart contract solution to meet critical custom-
er requirements to enable information logistics between organizations to reduce
costs and time. To establish a separation of concerns, we pose the following
sub-questions. What differentiating technology performance advantages do Safe-
One Chains smart contract solutions offer? What are the critical smart contract
requirements that the SafeOne Chains framework satisfies? What are the unique
features of the automation of information logistics between organizations that
the SafeOne Chains framework aims to support? The rest of this white paper is
structured as follows.

First, Section 3 focuses on the concrete advantages of the SafeOne Chains frame-
work in achieving technological performance increases compared to related solu-
First, Section 3 focuses on the concrete advantages of the SafeOne Chains frame-
work in achieving technological performance increases compared to related solu-
tions. Section 4 offers functional and quality objectives in combination with the
stakeholders involved for organized smart contract systems. Section 5 shows how
the running case supports the SafeOne Chain-framework value transfer protocol.
Finally, Section 6 concludes this white paper together with the analysis of con-
straints, outstanding issues and future development work.

-http://solidity.readthedocs.io/en/develop/

-https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

-https://bitcoinsmagazine.com/articles/ethereum-classic-hard-forks-diffuses
difficulty-bomb-1484350622/

-https://cointelegraph.com/news/ethereum-hard-fork-no-4-has-arrived-as-
dosattacks-intensificar

-https://forum.dahub.Org/t/whats-up-with-casper-proof-of-stake-andsharding
/6309/6309

t.me/SafeOneChain

THE SAFEONE CHAIN BLOCKCHAIN TECHNOLOGY

 The blockchain of the SafeOne BlockChain platform executes the SHA-256 The blockchain of the SafeOne BlockChain platform executes the SHA-256
cryptographic algorithm maintaining the UTXO model used by Satoshi Na-
kamoto in 2009 with the creation of bitcoin, however it offers great chang-
es and added values compared to blockchains such as bitcoin since It inte-
grates a virtual machine (Ethereum EVM) with the difference that it runs a
PoS consensus system, which makes it more efficient and scalable in the
long term. Owning a virtual machine makes possible the development of

agreement between P2P peers or business-to-business B2B in which all
the requirements and conditions are stipulated for the smart contract to
be executed correctly, is to clarify and emphasize that a smart contract is
only as smart as the person who programmed it.

For the operation of some Smart contracts in blockchains, the use of Ora-For the operation of some Smart contracts in blockchains, the use of Ora-
cles is necessary, which play the role of judges (only when future informa-
tion must be verified), offering the smart contract the pertinent informa-
tion for the smart contract to be executed. For example, suppose that you
want to develop a smart contract in your university or company which will
reward the performance above the average of the employees of said enti-
ties, in the case of the university you will reward the professors whose stu-

company to the one who stands out among the staff or improves the per-
formance of the company directly / indirectly, rewarding them with a
reward of $ 500 USD (equivalent in SafeOne cryptocurrencies) to each
person who meets these requirements, for the smart contract to fulfill its
function, it must have access to a database or oracle that provides perti-
nent information on the status of the beneficiaries of the rewards, so these
smart contracts are so secure as the blockchain it is associated with and as
weak as its oracles or developers can be.

In contrast to Bitcoins, many smart-contract systems are equipped with
the Turing-complete language Solidity that resembles JavaScript syntax
In contrast to Bitcoins, many smart-contract systems are equipped with
the Turing-complete language Solidity that resembles JavaScript syntax
and targets for enactment, e.g., the Ethereum Virtual [44] machine. Ethe-
reum is the de facto leading smart-contract system despite being plagued
by several deficiencies. First, proof-of-work transaction validation diminish-
es scalability to the point where Ethereum is considered to not be feasible
for most industry applications.

t.me/SafeOneChain

LIMITATIONS OF ETHEREUM INDUSTRY ADOPTION

 Second, in a recent crowdfunding case study, the Ethereum affiliated So- Second, in a recent crowdfunding case study, the Ethereum affiliated So-
lidity smart contract was hacked because of security flaws resulting from a
lack in the state of the art with respect to tools for formal verifications [3].
The security flaw resulted in a loss of ca. $50 million. Consequently, Ethere-
um performed a hard fork resulting in a schism yielding two separate Ethe-
reum versions. Yet another Ethereum hard fork was caused by a denial of
service attack, and more hard forks must be expected for realizing-
proof-of-stake [2] transaction validation and blockchain sharing [20]. More
reasons limit widespread Ethereum industry adoption [8]. For example, an
inability to automate cross-organizational information-logisticsjacking pri-
vacy protecting differentiations between external- versus related internal
private contracts, secure and stable virtual machines for blockchains with
better performing proof-of-stake [2] transaction validation, formally verifi-
able smart contract languages lite wallets that do not require downloading
the entire blockchain, andmobile-device solutions for smart contracts with
simple payment verification (SPV) [14]. simple payment verification (SPV) [14].

The latter means that clients merely download block headers when they
connect to an arbitrary full node [23]. While SafeOne Chain uses the Ethe-
The latter means that clients merely download block headers when they
connect to an arbitrary full node [23]. While SafeOne Chain uses the Ethe-
reum Virtual Machine (EVM) for a current lack of more suitable alterna-
tives, according to [19], the EVM has deficiencies such as earlier experi-
enced attacks against mishandled exceptions and against dependencies
such as for transaction-ordering, timestamps, and so on. It is also desirable
for a smart-contract system to achieve industry-scalability with employing

compatibility to other blockchain systems such as Bitcoins [23], or Colored
coins [36]. Further more, an adoption of features from the Bitcoin Light-
ning Network [35] yields scalability via bidirectional micropayment chan-
nels. While smart-contract systems such as Ethereum attract attention, a
widespread industry adoption does not exist for the above discussed rea-
sons.

t.me/SafeOneChain

 SafeOne Chains Uniqueness and Comparison with Ethereum his whitepa-
per addresses the gap by specifying the SafeOne Chains framework for
smart- contract systems that answers the question of how to develop a
smart-contract solution to satisfy critical customer requirements for en-
abling cross-organizational information logistics to reduce costs and time?
To establish a separation of concerns, we pose the following sub-questions.
What differentiating technological performance advantages do SafeOne

ments the SafeOne Chains framework satisfies? What are the unique fea-
tures of cross-organizational information logistics automation the SafeOne
Chains framework aims to support? We will answer this and more ques-
tions throughout the document. More reasons limit widespread Ethereum
industry adoption [8]. For example, an inability to automate cross-organi-
zational information-logistics, lacking privacy protecting differentiations
between external- versus related internal private contracts, secure and
stable virtual machines for blockchains with better performing-stable virtual machines for blockchains with better performing-
proof-of-stake [2] transaction validation, formally verifiable smart contract
languages, lite wallets that do not require downloading the entire block-
chain, and mobile-device solutions for smart contracts with simple pay-
ment verification (SPV) [14]. The latter means that clients merely download
block headers when they connect to an arbitrary full node [23].

SAFEONE CHAIN PERFORMANCE ADVANTAGE

 One of SafeOne Chains main goals is to build a decentralized smart con-

SAFEONE CHAIN PERFORMANCE ADVANTAGE

 One of SafeOne Chains main goals is to build a decentralized smart con- One of SafeOne Chains main goals is to build a decentralized smart con-
tract system based on UTXO with a proof-of-stake (PoS) consensus model
[37] this means that the creator of the next block is chosen at random
based on the wealth held in cryptocurrencies within their wallet and the
maturity of the same, constantly rotating addresses to ensure decentraliza-
tion and the participation of the entire network. Therefore, blocks are usu-
ally built or minted rather than mined, there are block rewards in addition

amount of funds they bet. This allows the chain to achieve high levels of
security without excessive energy consumption, since to participate as an
applicable active node for staking it is enough to have a Raspberry-Pi,
laptop or 64-bit desktop PC which do not have such a high consumption
compared to Proof of Work string mining rigs.

t.me/SafeOneChain

 SafeOne supports the Bitcoin and Ethereum ecosystems and aims to pro-
duce a variation of Bitcoin with Ethereum Virtual Machine (EVM) support.
Following a pragmatic design approach, SafeOne Chain employs industry
use cases with a strategy that integrates a 100% safe to invest within the
blockchain, which will be reached through state of the art vetting process-
es and for the rest risk we offer an unique Tokenized Insurance policy. The
latter allows SafeOne to promote blockchain technology to a wide range of

globally while proceeding to create a secure and stable network in the
long term. The rest is structured as follows. Section 3.1 compares the ad-
vantages of Bitcoin UTXO versus the ethereum account model. Next, Sec-
tion 3.2 discusses the consensus platform for the SafeOne blockchain. Sec-
tion 3.3 shows the integration of SafeOne Chain contracts into the EVM. Fi-
nally, Section 3.4 describes the payment model for SafeOne Chains opera-
tions.

 SafeOne supports the Bitcoin and Ethereum ecosystems and aims to pro- SafeOne supports the Bitcoin and Ethereum ecosystems and aims to pro- SafeOne supports the Bitcoin and Ethereum ecosystems and aims to pro-
duce a variation of Bitcoin with Ethereum Virtual Machine (EVM) support.
Following a pragmatic design approach, SafeOne Chain employs industry
use cases with a strategy that integrates a 100% safe to invest within the
blockchain, which will be reached through state of the art vetting process-
es and for the rest risk we offer an unique Tokenized Insurance policy. The
latter allows SafeOne to promote blockchain technology to a wide range of

globally while proceeding to create a secure and stable network in the
long term. The rest is structured as follows. Section 3.1 compares the ad-
vantages of Bitcoin UTXO versus the ethereum account model. Next, Sec-
tion 3.2 discusses the consensus platform for the SafeOne blockchain. Sec-
tion 3.3 shows the integration of SafeOne Chain contracts into the EVM. Fi-
nally, Section 3.4 describes the payment model for SafeOne Chains opera-
tions.

UTXO VERSUS ACCOUNT MODEL

 In the UTXO model, transactions use as input unspent Bitcoins that are

UTXO VERSUS ACCOUNT MODEL

 In the UTXO model, transactions use as input unspent Bitcoins that are In the UTXO model, transactions use as input unspent Bitcoins that are
destroyed and as transaction outputs, new UTXOs are created. The results
of unspent transactions are created as exchange and returned to the
spender [1]. In this way, a certain volume of Bitcoins is transferred between
different private key owners, and new UTXOs are spent and created in the
transaction chain.

t.me/SafeOneChain

 The UTXO of a Bitcoin transaction is unlocked by the private key that is
used to sign a modified version of a transaction. In the Bitcoin network,
miners generate Bitcoins with a process called coinbase transaction, which
does not contain any input. Bitcoin uses a scripting language for transac-
tions with a limited set of operations. In the Bitcoin network, the scripting
system processes data by stacks (Main Stack and Alt Stack), which is an ab-
stract data type that follows the LIFO principle of Last-In, First-Out. In the
Bitcoin client, developers use the is Standard() [1] function to summarize
scripting types. Bitcoin client support: P2PKH (Pay to Public Key Hash),
P2PK (Pay to Public Key), MultiSignature (less than 15 private key signa-
tures), P2SH (Pay to Script Hash) and OP_RETURN.

With these five types of standard scripting, Bitcoin clients can process
complex payment logics. On top of that, a non-standard script can be cre-
With these five types of standard scripting, Bitcoin clients can process
complex payment logics. On top of that, a non-standard script can be cre-
ated and executed if the miners agree to encapsulate such a non standard
transaction. For example, using P2PKH for the process of creating and exe-
cuting scripts, we assume that we pay 0.01BTC for bread in a bakery with
the imaginary Bitcoin address "Bread Address". The result of this transac-
tion is:

OP_DUP OP_HASH160 <Bread Public Key Hash> OP_EQUAL OP_CHECKSIG

Operation OP_DUP duplicates the top element of the stack. OP_HASH160 Operation OP_DUP duplicates the top element of the stack. OP_HASH160
returns aBitcoin address as the main item. To establish ownership of a bit-
coin, a Bitcoin address is required in addition to a digital key and a digital
signature. OP_EQUAL produces TRUE (1) if the two main elements are ex-
actly the same and otherwise FALSE (0). Finally, OP_CHECKSIG produces a
public key and a signature along with a validation for the signature corre-
sponding to the hash data of a transaction, returning TRUE if a match

<Brown signature> < Pan public key>

The combined script with the previous two:

<Pan Sign> <Pan Public Key> OP_DUP OP_HASH160
<Bugging public key hashes> OP_EQUAL OP_CHECKSIG

Only when the unlock script and the lock script have a matching pre-Only when the unlock script and the lock script have a matching pre-
defined condition is the execution of the script combination true. It means
that the bread signature must be signed by matching the private key of a
valid bread address signature and then the result is true.

t.me/SafeOneChain

Unfortunately, Bitcoin's scripting language is not Turing-complete, for ex-
ample, there is no loop function. The Bitcoin scripting language is not a
commonly used programming language. Limitations mitigate security
risks by avoiding the emergence of complex payment terms, for example,
the generation of infinite loops or other complicated logical loops. In the
UTXO model, it is possible to transparently track the history of each trans-
action through the public ledger. The UTXO model has parallel processing
capability to initialize transactions between multiple addresses that indi-
cate extensibility. In addition, the UTXO model supports privacy in the
sense that users can use Change Address as the output of a UTXO. SafeOne
Chains goal is to implement smart contracts based on the innovative
design of the UTXO model. Compared to the UTXO model, Ethereum is an
account-based system. More precisely, each account experiences direct
transfers of value and information with state transitions.

https://en.bitcoin.it/wiki/Script

A 20-byte ethereum account address comprises a noun as a counter to

https://en.bitcoin.it/wiki/Script

A 20-byte ethereum account address comprises a noun as a counter to A 20-byte ethereum account address comprises a noun as a counter to
ensure the unique processing of a transaction, the balance of the main in-
ternal cryptographic fuel to pay transaction fees called Ether, an optional
contract code, and empty account storage by default. The two types of
Ether accounts are, on the one hand, external controlled by private key
and, on the other hand, controlled by contract code. The old null code ac-
count type creates and signs transactions for message transfer. The latter

storage, create contracts or send other messages.

On Ethereum, balance management resembles a bank account in the real
world. Each newly generated block potentially influences the overall status
On Ethereum, balance management resembles a bank account in the real
world. Each newly generated block potentially influences the overall status
of other accounts. Each account has its own balance, storage, and code
space base for calling other accounts or addresses, and stores the respec-
tive execution results. In the existing Ethereum account system, users per-
form P2P transactions through remote client procedure calls. Although it
is possible to send messages to more accounts via smart contracts, these
internal transactions are only visible in each account's balance and track-
ing them on Ethereum's public ledger is a challenge.

Based on the discussion above, we consider the Ethereum account model
to be a scalability bottleneck and see clear advantages of the UTXO model
of the Bitcoin network. Since the latter enhances the network effect we
wish to offer, an essential design decision for the pending launch of Safe-
One Chain is the adoption of the UTXO model.

t.me/SafeOneChain

CONSENSUS MANAGEMENT

There are ongoing discussions about consensus and which platform meets There are ongoing discussions about consensus and which platform meets
the needs of the respective project requirements. The most discussed con-
sensus topics are: PoW [41], PoS [2], Dynamic PoS, and Byzantine fault tol-
erance [7] as discussed by HyperLedger. The nature of consensus is about
achieving data consistency with distributed algorithms. The available op-
tions are, for example, the theorem of Fischer Lynch and Paterson [5]
which states that a consensus cannot be reached without a 100% agree-

In the Bitcoin network, miners participate in the hash collision verification
process via PoW. When the hash value of a miner is able to calculate and
meet a certain condition, the miner can claim from the network that a new
block is extracted: For the number of miners M and the mining difficulty D,
the Hash() represents the power SHA256 with range of values [0, M] and D.
The SHA256 algorithm used by

https://github.com/ethereum/wiki/wiki/White-Paper https://github.com/ethereum/wiki/wiki/White-Paper

http://tinyurl.com/zxgayfr

Bitcoin allows each node to check each block quickly, if the number of Bitcoin allows each node to check each block quickly, if the number of
miners is high compared to the mining difficulty. The 80-byte BlockHeader
varies with each different Nonce. The overall difficulty level of mining is dy-
namically adjusted according to the total hash power of the blockchain
network. When two or more miners resolve a block at the same time, a
small fork occurs in the network. This is the point at which the blockchain
must make a decision about which block it should accept or reject. In the
Bitcoin network, the chain is legitimate that has the most proven work at-
tached. Most PoS blockchains can get their PeerCoin inheritance which is
based on an older version of Bitcoin Core. There are different PoW algo-
rithms such as Scrypt, X11, Groestl, Equihash [4], etc. The purpose of
launching a new algorithm is to prevent the accumulation of computing
power by an entity and ensure that application-specific integrated circuits
(ASICs) cannot be introduced into the economy. SafeOne Core chooses PoS
based on the latest Bitcoin source code for basic consensus building. In a
traditional PoS transaction, the generation of a new block must meet the
followingcondition:

ProofHash < coins × target × age

t.me/SafeOneChain

In ProofHash, the stake modifier [40] calculates along with unspent out-
puts and the current time. With this method, a malicious attacker can initi-
ate a double- spend attack by accumulating large amounts of coin age. An-
other problem caused by the age of the coins is that the nodes are online
intermittently after rewarding rather than being continuously online.
Therefore, in the improved version of the PoS agreement, the removal of
the age of the coin encourages more nodes to beonline simultaneously.

due to potential coin age attacks and other types of attacks [16]. SafeOne
Chain agrees with the security analysis of the Blackcoin team [40] and
adopts PoS 3.0 on the latest SafeOne Core.

PoS 3.0 theoretically rewards investors who 14bet their coins longer, with-PoS 3.0 theoretically rewards investors who 14bet their coins longer, with-
out giving any incentive to coin holders who leave their wallets offline. 3.3
SafeOne Chains contract and EVM integration The EVM is stack-based with
a 256-bit machine word. Smart contracts running on Ethereum use this vir-
tual machine for execution. The EVM is designed for the Ethereum block-
chainband therefore assumes that every value transfer uses an ac-
count-based method. SafeOne Chain is based on Bitcoin's blockchain

https://peercoin.net/

https://litecoin.info/Scrypt

http://cryptorials.io/glossary/x11/

http://www.groestlcoin.org/about-groestlcoin/

http://blackcoin.co/

Therefore, SafeOne Chain has an account abstraction layer that translates Therefore, SafeOne Chain has an account abstraction layer that translates
the UTXO-based model into an account-based interface for the EVM. Note
that an abstraction layer in computing is critical to hiding the implementa-
tion details of a particular functionality to establish a separation of con-
cerns to facilitate interoperability and platform independence. EVM inte-
gration: All transactions in SafeOne Chain use the Scripting Language of
Bitcoin, just like Bitcoin. On SafeOne Chain, however, there are three new

– OP_EXEC: This operation code triggers special processing of a transaction
(explained below) and executes a specific input EVM bytecode.

t.me/SafeOneChain

– OP_EXEC_ASSIGN: This opcode also triggers special processing as a
OP_EXEC. This opcode has as input a contract address and data for the
contract. It then follows the execution of the contract bytecode while pass-
ing the given data (given as CALLERDATA in EVM). This opcode optionally
transfers money to a smart contract .

– OP_TXHASH: This operation code is used to reconcile a strange part of
the accounting abstraction layer and pushes the transaction ID hash of a
currently executed transaction. Traditionally, scripts only run when trying
to spend an output. For example, while the script is on the blockchain,
with a standard public key hash transaction, no validation or execution
takes place. Execution and validation do not occur until a transaction input
references the output. At this point, the transaction is only valid if the
input script (ScriptSig) provides valid data to the output script that causes
the output script to return non-zero.

SafeOne Chain, however, must accommodate smart contracts that run im-
mediately when merged with the blockchain. As shown in Figure 1, Safe-
SafeOne Chain, however, must accommodate smart contracts that run im-
mediately when merged with the blockchain. As shown in Figure 1, Safe-
One Chain accomplishes this by specially processing transaction output
scripts (ScriptPubKey) that contain OP_EXEC or OP_EXEC_ASSIGN. When
one of these opcodes is detected in a script, it is executed by all nodes in
the network after the transaction is placed in a block.

In this mode, the actual bitcoin scripting language serves less as a script-
ing language and instead carries data to the EVM. The latter changes state
within its own state database, after execution by any of the opcodes, simi-
lar to an Ethereum contract.

To facilitate the use of SafeOne Chain smart contracts, we have to authen-
ticate the data sent to a smart contract, as well as its creator derived from
a particular public keyhash address .

To prevent the UTXO set of the SafeOne blockchain from becoming too
large, OP_EXEC and OP_EXEC_ASSIGN transaction outputs are also ex-
pendable. OP_EXEC_ASSIGN outputs are spent by contracts when their
code sends money to another contract, or to a pubkeyhash address. Depar-
tures P_EXEC OR they are spent every time the contract uses the suicide
operation to withdraw from the blockchain.

t.me/SafeOneChain

SAFEONE CHAINS ACCOUNT ABSTRACTION LAYER

The EVM is designed to work on an account based blockchain. However, The EVM is designed to work on an account based blockchain. However,
SafeOne Chain, being bitcoin based, uses a UTXO-based blockchain and
contains an account abstraction layer (AAL) that allows the EVM to func-
tion on the SafeOne blockchain without significant modifications to the ex-
isting Ethereum virtual machine and contracts. The EVM account model is
easy to use for smart contract programmers. There are operations that
check the balance of the current contract and other contracts on the
blockchain, and there are operations to send money (attached to the data)
to other contracts. Although these actions seem pretty basic and minimal-
ist, they are not trivial to apply within the UTXO-based SafeOne blockchain
. Therefore, the AAL implementation of these operations may be more
complex than expected.

A smart contract implemented by SafeOne-blockchain is assigned and en-
forceable by its management and comprises a newly implemented con-
A smart contract implemented by SafeOne-blockchain is assigned and en-
forceable by its management and comprises a newly implemented con-
tract balance set to zero. Currently there is no protocol in SafeOne Chain
that allows you to implement a contract with a non-zero balance. To send
funds to a contract, a transaction uses the OP_EXEC_ASSIGN opcode. The
example output script below sends money to a contract: 1: virtual machine
version 10000, gas limit for the transaction 100, gas price in SafeOne sa-

0x1452b22265803b201ac1f8bb25840cb70afe3303 ; ripemd−160 hash the con-
tract tx id OP EXEC ASSIGN. The simple script above delivers transaction
processing to the OP_EXEC_ ASSIGN operation code. Assuming that there
are no gas-free exceptions or other exceptions, the amount of value given
to the contract is OutputValue. The exact details of the gas mechanism
that we discuss below. By adding this output to the blockchain, the output
enters the domain of the UTXO set owned by the contract.

This value of production is reflected in the contract balance as the sum of This value of production is reflected in the contract balance as the sum of This value of production is reflected in the contract balance as the sum of
expendable products. Figure 2. Assign Funds and/or a TX message con-
tract. Although Figure 2 shows sending funds to a contract from a stan-
dard public key hash output, the method for sending money from one con-
tract to another is almost identical. When the contract sends funds to an-
other contract or public key hash address, the first one spends one of its
own results. The shipping contract involves expected contractual transac-

sense that they must exist in a block to be valid for the SafeOne network.
Expected contractual transactions are generated by miners as they verify
and execute transactions, rather than being generated by consumers. As
such, they are not broadcast on the P2P network. Figure 3. SafeOne block
validation showing the Expected Contract

t.me/SafeOneChain

TRANSACTION LIST

The main mechanism for performing expected contractual transactions is The main mechanism for performing expected contractual transactions is
the new operation code, OP_TXHASH which is part of Figure 3. Internally,
both OP_EXEC and OP_EXEC_ASSIGN have two different modes. After it is
executed as part of the processing of the output script, the EVM is execut-
ed. However, when op codes are executed as part of inbound script pro-
cessing, the EVM does not run to avoid double execution. In contrast,
OP_EXEC and OP_EXEC_ASSIGN op codes behave similarly to non-ops and

a given transaction hash.

That is why OP_TXHASH is so important for the functioning of this concept.
Briefly, OP_TXHASH is a new added operation code that pushes the SHA256
That is why OP_TXHASH is so important for the functioning of this concept.
Briefly, OP_TXHASH is a new added operation code that pushes the SHA256
hash of the current spending transaction into the Bitcoin Script stack. The
OP_EXEC and OP_EXEC_ASSIGN opcodes check the List of Expected Con-
tract Transactions During a Spending Attempt. After the transaction
passes (usually from OP_TXHASH) to the opcodes that exist in the Expect-
ed Contract Transactions List, the result is 1 or it can be spent. Otherwise,
the return is 0, or it cannot be spent. In this way, OP_EXEC and OP_EX-
EC_ASSIGN using vout can only be spent when a contract, and therefore
the account abstraction layer, requires the vout to be expendable, that is,
while the contract tries to send money. This results in a safe and robust
way to allow contract funds to be spent only through a respective contract
in alignment with a normal UTXO transaction. A specific scenario occurs if
a contract has more than one result that can be spent. Each node can
choose different outputs and therefore use completely different transac-
tions to spend OP_EXEC_ASSIGN transactions. This is solved in SafeOne
Chain by a coin selection algorithm critical to consensus.

The latter is similar to the standard coin selection algorithm used within a The latter is similar to the standard coin selection algorithm used within a
user wallet. However, SafeOne significantly simplifies the algorithm to
avoid the risk of denial-of-service (DoS) attack vectors and to perform
simple consensus rules. With this coin selection algorithm critical for con-
sensus, there is now no chance for other nodes to choose different curren-
cies to be spent by a contract. Any miner/node that chooses different out-
puts must be forked from the SafeOne Chains mainnet, and its blocks
become invalid. When an EVM contract in Figure 4 sends money to a
public keyhash address or to another contract, this event builds a new
transaction. The consensus-critical coin selection algorithm chooses the
best results from the group of contracts. These outputs are spent as inputs
with the input script (ScriptSig) comprising a single OP_TXHASH opcode.

t.me/SafeOneChain

The results are, therefore, the destination of the funds and a change result
(if necessary) to send the remaining funds from the transaction to the con-
tract. This transaction hash is added to the Expected Contract Transaction
List, and then the transaction itself is added to the block immediately after
the contract execution transaction. Once this constructed transaction is
validated and executed, a confirmation check of the Expected Contract
Transactions List follows. This transaction hash is then removed from the
Expected Contract Transactions List. Using this model, it is impossible to
spoof transactions to spend by providing a hash encoded as an input
script, rather than using OP_TXHASH.

The abstraction layer described above makes EVM contracts alien to the
selection of specific currencies and outputs. Instead, EVM contracts only
The abstraction layer described above makes EVM contracts alien to the
selection of specific currencies and outputs. Instead, EVM contracts only
know that they and other contracts have a balance so that money can be
sent to these contracts, as well as out of the contract system to public key-
hash addresses. Consequently, contract compatibility between SafeOne
Chain and Ethereum is strong and very few modifications are required to
port an Ethereum contract to the SafeOne blockchain.

SPEND THE CONTRACT OP_EXEC_ASSIGN TRANSACTION. SPEND THE CONTRACT OP_EXEC_ASSIGN TRANSACTION.

Standard transaction types added: The following are the standard transac-Standard transaction types added: The following are the standard transac-
tion types that we added to SafeOne Chain. They are documented here as
Bitcoin script templates: the implementation of a new contract on the
blockchain requires an output script as follows: 1;virtual machine version [
Gas Limit] [GasPrice] [Contract EVM ByteCode]OP EXEC [Sending funds to
a contract already implemented on the blockchain requires the following
script: 1;virtual machine version [Gas Limit] [Gas Price] [Data to be sent to
the contract] rip−emd160 hash of contract transactionid] OP EXEC ASSIGN
Note that there are no standard transaction types for spending, as that re-
quires the Expected Contract Transactions List. Therefore, these spending
transactions are neither transmitted nor valid on the P2P network.

GAS MODEL

One problem SafeOne faces in adding Turing's completeness to the Bit-
coinBitcoin blockchain is relying only on the size of a transaction, which is
One problem SafeOne faces in adding Turing's completeness to the Bit-
coinBitcoin blockchain is relying only on the size of a transaction, which is
unreasonable in determining the fee paid to miners. The reason is that one
transaction can loop infinitely and stop the entire blockchain for transac-
tion processing miners. As Figure 5 shows, the SafeOne Chain project
adopts the concept of Ethereum gas. In the concept of gas, each EVM
opcode executed has a price and each transaction has an amount of gas to
spend. The remaining gas after the transaction is refunded to the sender. spend. The remaining gas after the transaction is refunded to the sender.

t.me/SafeOneChain

GAS REFUND MODEL.

When the gas required for contract execution exceeds the amount of gas When the gas required for contract execution exceeds the amount of gas
available for a transaction, then the actions of a transaction and changes
in status are reversed. Therefore, any modified permanent storage is re-
verted to its original state, including any expenditure of contractual funds
so that the latter are not spent. Despite a reversal, all the gas from a trans-
action is consumed and delivered to the processing miner, as the comput-
ing resources have already been spent. Although SafeOne Chain uses Ethe-

EVM operating code, to differ significantly from Ethereum. The exact
values are determined by comparing the existing prices on Ethereum with
the amount of processing and blockchain resources required for each
opcode to SafeOne Chain. When creating a financing transaction or con-
tract deployment, the user specifies two specific elements for the gas. The
GasLimit determines the amount of consumable gas by executing a con-
tract. The second element is the GasPrice to set the exact price of each gas
unit in SafeOne Satoshis.

The latter are currently a smaller unit of the Bitcoin currency that thethe
blockchain records. The maximum SafeOne expense of the execution of a
The latter are currently a smaller unit of the Bitcoin currency that thethe
blockchain records. The maximum SafeOne expense of the execution of a
contract is equivalent to the multiplication of GasLimit by GasPrice. If this
maximum expense exceeds the transaction fee provided by the transac-
tion, the transaction is invalid and cannot be extracted or processed. The
remaining transaction fee after subtracting this maximum expense is the
Transaction Size Fee and analogous to Bitcoin's standard fee model. To de-

ables.

First, the transaction size fee must match the total size of a transaction, First, the transaction size fee must match the total size of a transaction,
that is, usually determined by a minimum number of coins per kilobyte for-
mula. The second variable is the Gas Price of the execution of a contract. In
combination, PoS miners choose the most important and cost-effective
transactions to process and include in a block. Consequently, there is a
free market fee model with miners and users optimizing the best rate that
suits their transaction speed and the price they are willing to pay.

t.me/SafeOneChain

REFUNDS:

Using the UTXO model, funds sent to miners as transaction fees are non- Using the UTXO model, funds sent to miners as transaction fees are non-
negotiable. It is impossible for a miner to partially refund a fee if the trans-
action is easier for the miner to process than expected. Still, for the gauze
model to be useful, there must be a method of reimbursing the funds to
the sender. In addition, it should be possible to reverse the status of a
transaction that runs out of gas and return gas fees to miners. Reimburse-
ment of gas fees in SafeOne Chain is enabled by creating new outputs as

We added a new block validation consensus rule to ensure that refund re-We added a new block validation consensus rule to ensure that refund re-
sults must exist in the coinbase transaction. Otherwise, miners may choose
not to reimburse the gas. The refund is returned to the sender of a transac-
tion fund by copying the output script. For security reasons, this script is
currently a standard pay-to-pubkeyhash or paid-to-scripthash script. We
plan to lift the restriction after further safety studies. For reference, the
OP_EXEC_ASSIGN has the following format for allocating contractual

Inputs:

– Transaction hash for expenses [optional]

– version number

– gas limit

– gas price

– data

– smart contract address – smart contract address

Outputs:

– Expendable

t.me/SafeOneChain

REFUNDS:

Using the UTXO model, funds sent to miners as transaction fees are non- Using the UTXO model, funds sent to miners as transaction fees are non-
negotiable. It is impossible for a miner to partially refund a fee if the trans-
action is easier for the miner to process than expected. Still, for the gauze
model to be useful, there must be a method of reimbursing the funds to
the sender. In addition, it should be possible to reverse the status of a
transaction that runs out of gas and return gas fees to miners. Reimburse-
ment of gas fees in SafeOne Chain is enabled by creating new outputs as

We added a new block validation consensus rule to ensure that refund re-We added a new block validation consensus rule to ensure that refund re-
sults must exist in the coinbase transaction. Otherwise, miners may choose
not to reimburse the gas. The refund is returned to the sender of a transac-
tion fund by copying the output script. For security reasons, this script is
currently a standard pay-to-pubkeyhash or paid-to-scripthash script. We
plan to lift the restriction after further safety studies. For reference, the
OP_EXEC_ASSIGN has the following format for allocating contractual

Inputs:

– Transaction hash for expenses [optional]

– version number

– gas limit

– gas price

– data

– smart contract address – smart contract address

Outputs:

– Expendable

t.me/SafeOneChain

Accordingly:

we give an example EXEC_ASSIGN below:

1

10000

100

0xABCD1234...

3d655b14393b55a4dec8ba043bb286afa96af485 3d655b14393b55a4dec8ba043bb286afa96af485

EXEC_ASSIGN

If running the virtual machine results in a no-gas exception, this output is If running the virtual machine results in a no-gas exception, this output is
spent on the next block transaction using the redemption script OP_TX-
HASH. The vout generated for this transaction is a pubkeyhash script taken
from the vin[0].prevout script. In this early version of SafeOne Chain, only
pubkeyhash senders are allowed for VM funding transactions. Although
other forms can be accepted in blocks to result in the execution of the vir-
tual machine, the msg.sender in the EVM is "0" and any lack of gas or gas

PARTIAL REIMBURSEMENT MODEL

Belonging to the gas model, it is also necessary to reimburse the unspent
part for various reasons. On the one hand, users can spend a lot of funds to
ensure that their contract is executed correctly. Still, the unused gas re-
turns as a refund from SafeOne Chain.

The return address for the gas is expressed on the blockchain as a The return address for the gas is expressed on the blockchain as a
vin[0].prevout script of the shipping transaction. The gas is sent to a con-
tract by using bitcoin's standard transaction fee mechanism. Therefore, the
new fee model slightly increases this to make the transaction fee:

gas tariff = gas limit � txfee gas price = vin − vout

txrelay tariff = txfee − gas tariff

reimbursement= gastariff − used gas

t.me/SafeOneChain

There is a proposal to allow miners to evaluate both the tx_relay_fee and
the gas_price under a single "credit price" value to determine the priority
of the transaction. During the execution of the contract, gas tokens are
subtracted from the total fee, that is, multiplied by gas_price. After com-
pleting the execution of the contract, the rest of this gas_fee must be re-
turned to the given gas return script by adding an output to the coinbase
transaction that miners use to recover their block reward. The added vout

To receive a gas refund, this must be a spent public keyhash vout. Other-To receive a gas refund, this must be a spent public keyhash vout. Other-
wise, the gas refund remains with the miner in an off-gas condition and
the funds sent will remain with the contract. Please note that it is current-
ly only possible to have one EVM contract execution per transaction. There-
fore, the case never arises when two contract executions attempt to share
the transaction fee. This scenario can be enabled after you resolve existing
issues with multiple EVM runs per transaction. The current design sup-

Important GAS Edge cases: Miners should be wary of contract gas scripts Important GAS Edge cases: Miners should be wary of contract gas scripts
and return funds. If the last script output causes a block to exceed the
maximum size, then the contract transaction can not be placed in this
block. Instead, the execution of the gas return script must take place again
in the next mined block. Miners must ensure that there is sufficient capaci-
ty in the candidate block for the gas return script before attempting to ex-
ecute the contract.

Not following this rule results in a contract that requires repeated execu-
tion, if the refund script does not fit into the current block. If there are no
gas funds to return, there is no vout requirement to return the funds. Con-
sensus is critical that the transaction fee includes the gas_fee. A transac-
tion is invalid when adding it to a block results in a negative gas refund, or
when the gas_fee is less than the transaction fee. Any transaction output
script that has more than one OP_EXEC o r OP_EXEC_ASSIGN opcode is not

cursion and multiple execution issues. Consequently, static analysis is suf-
ficient to determine whether a script is invalid. After SafeOne very block-
chain-oriented technicalities, below we conceptually describe the manage-
ment of smart contract lifecycles. Note that the conceptual presentation in
the sequel is supported by scientific literature [12, 13, 24, 18, 26,27, 32].

t.me/SafeOneChain

SMART CONTRACT MANAGEMENT

As previously stipulated, we assume that lifecycle management is essential As previously stipulated, we assume that lifecycle management is essential
to securing smart contracts, as proper investigation of potential collaborat-
ing parties is carried out prior to enactment. We consider a real-life case of
a failed delivery of seafood where a commercial transaction conflict arises
from an underspecified conventional contract (CC). An EU company
(buyer) orders 12 920 kg of cuttlefish from a South Asian company (seller).
In the CC, the responsibility for the quality of the product lies with the
seller until the carrier obtains the goods.

Subspecification refers to the quality of the goods which is not specified in
the CC and the buyer does not check the goods before the transfer to the
shipping company. 15 (carrier).

http://cisgw3.law.pace.edu/cases/090324s4.html

The smart contract alternative resolves the subspecification conflict that The smart contract alternative resolves the subspecification conflict that
exists in the CC. Therefore, in Section 3.1, the Safeone-framework objective
model presented reflects the properties of a smart contract lifecycle that is
fully formalized in [18, 26, 27, 32]. Below, Section 3.2 provides a small life
cycle example for seafood shipping.

LIFECYCLE MANAGEMENT OBJECTIVES

To discuss the objectives, we use the following approach. The Agent- Ori-To discuss the objectives, we use the following approach. The Agent- Ori-
ented Modeling (AOM) method [38] is a socio-technical approach to re-
quirements engineering that takes into account that humans who may
belong to organizations use technology to collaborate in problem solving.
In this section, we use the AOM target model type to capture sociotechni-
cal behavioral characteristics important to the Safeone Chains smart con-
tract system that supports the running case.

 Goal models improve communication between technical and non-techni-
cal stakeholders to increase understanding of problem mastery. Note that
AOM goal models are also instrumental [39] for new agile software devel-
opment techniques.

t.me/SafeOneChain

MODELING ELEMENTS FOR AOM TARGET MODELS.

An objective model comprises three main elements represented as in An objective model comprises three main elements represented as in
Figure 6. The functional requirements we refer to as targets and are repre-
sented as parallelograms, the roles we represent as sticky men, and the
non-functional requirements. The latter has two variants, namely quality
objectives for non-function requirements related to software represented
as clouds, and human-related emotional objectives represented as ellipses.
The goal model starts with a central root value proposition that is not
atomic. Consequently, the value proposition is decomposed into a tree hi-
erarchy into sub-objectives where each sub-objective represents an aspect
to achieve its main objective [21] and the lowest sub-objective must be
atomic. Goals can have assigned roles, quality goals, and emotional goals
that are inherited to lower-level goals.

SafeOne Chains Framework Value Proposition: The root of the objective for SafeOne Chains Framework Value Proposition: The root of the objective for
the SafeOne Chains framework that we describe in Figure 7 and is the
value proposition of the logistics automation of information transfer and
inter-organizational value. We divide the complex value proposition into
objectives for smart contract lifecycle management [26, 27, 32], i.e. configu-
ration, implementation, enactment, reversal, termination.

These refined objectives are explored further in Section 3.2. Figure 7. Safe-These refined objectives are explored further in Section 3.2. Figure 7. Safe-
One Chain value proposition with lifeycle management refinement[26, 27,
18]. An essential emotional goal for industry adoption in Figure 7 is reli-
ance on the sociotechnical SafeOne Chains system [34] to reliably perform
the intended behavior. In this case, trust refers to the dependencies be-
tween humans who use technology to achieve goals.

We consider them economically viable and easy to adopt as additional
emotional goals that influence the widespread spread of the industry. The
former means that using the SafeOne Chains system results in an econom-
ic return on investment, while the latter means that the personal barrier to
entry for working with SafeOne Chain is low. There are quality objectives
associated with the value proposition that affect all refining parts of the
SafeOne Chains system. These quality objectives are derived from a refer-
ence architecture [28] for collaboration between organizations and busi-
ness processes.

t.me/SafeOneChain

The quality objectives below are structured according to [9, 17]. The follow-
ing quality objectives are not noticeable during the system runtime. Modi-
fiable means that the SafeOne Chains system changes and adapts during
its lifecycle to the business context. In addition, it harmonizes heteroge-
neous system environments among organizations that comprise the peri-
odic updating of commercial software. Integrable systems consist of sepa-
rately developed and integrated components for which the interface proto-

tween the components of SafeOne Chain must be assured. Next, we speci-
fy the quality objectives for SafeOne Chain that are noticeable during run-
time.

Interoperable means that SafeOne Chain must interoperate at runtime
with systems that support business functions such as planning, logistics,
Interoperable means that SafeOne Chain must interoperate at runtime
with systems that support business functions such as planning, logistics,
production, external partner systems, etc. Dynamic interoperability chal-
lenges are business, conceptual and technical heterogeneity.

Safe refers to resisting unauthorized attempts at use and denial of service
while providing services to reputable trusted users. To address security,
trust, and reputation issues, SafeOne Chain can come up with several strat-
egies. A blockchain-compatible authentication service verifies collaborat-
ing parties, monitors, inspects, and records network events. A system's
communication can be encrypted, and so on.

-Highly automated collaboration requires systems to cover the entire lifecy-
cle of the smart contract. Therefore, SafeOne Chain must provide possibili-
ties for a high degree of meaningful collaboration automation that pro-
cesses tedious and repetitivework while allowing humans to focus on the
remaining creative action.

-Flexible collaboration is a highly dynamic process that enacts activities by
diverse partners exchanging heterogeneous data [25]. Therefore, SafeOne
Chain must allow diverse collaboration scenarios between organizations
that harmonize heterogeneous concepts and technologies.

--Usable means that SafeOne Chain should be easy to use for automating
information logistics between organizations and breaks down into three
areas. Error prevention must anticipate and prevent the collaboration
errors that commonly occur. Error handling is the support of the system
for a user to recover from errors. Learning ability refers to the learning
time required of users to master the SafeOne Chains system. Finally, there
are quality objectives that are specific to architecture.

t.me/SafeOneChain

-Integrity is the quality of SafeOne Chain comprising the set of compo-
nents for the lifecycle management of smart contracts.

-Scalable refers to SafeOne Chains ability to combine more than two col-
laborating parts into one configuration.

-Applicable means that SafeOne Chain is critical to automating informa-
tion logistics between organizations and value transfers.

-Portable means that SafeOne Chain supports information logistics regard-
less of the industrial domain and the heterogeneity of collaboration with
respect to the infrastructure of enterprise, conceptual and technological
systems. Note that this also includes mobile devices.

-Performant means that computational and communicational stress is low
for the automation of information logistics. Therefore, it is important to
ensure that all phases of the life cycle of a smart contract are carried out
within a desirable response time and without an exponential need for com-
puting power.

LIFECYCLE MANAGEMENT EXAMPLE

We mapped the objective model in Section 3.1 in Figure 8 to project it in
the case of shellfish in execution. The modeling notation in Figure 8 is the
business process model and BPMN notation [22] and the entire lifecycle is
formalized in [26, 27, 18]. The green circle denotes a beginning of the life
cycle and the red circle the end of the life cycle. Rectangles with plus signs
are so-called threads that correspond to the lifecycle stages in Section 3.1.
A thread is a composite activity that hides details of lower-level business
processes.

SAFEONE CHAINS SMART CONTRACT LIFEYCLE MANAGEMENT

The starting point for each smart contract lifecycle in Figure 8 is the sea-The starting point for each smart contract lifecycle in Figure 8 is the sea-
food transport business case that requires the automation of information
logistics between organizations. Assuming that there is a collaboration
center [29] that serves as a preparation platform for the initiation of smart
contracts, a designer creates a template for an enterprise network model
(BNM) in which service types are inserted along with roles. The BNM work-
force enters the population phase. The roles affiliated with the respective
types of services are full of organizations collaborating on the smart con-
tract, i.e. bank2, seller, refrigerator1, carrier, refrigerator2, buyer and bank1.
Please note that several candidate organizations may compete for a specif-
ic position.

t.me/SafeOneChain

To reinforce the desire to hold a position, potential partner organizations
should match a service offering to the type of service a role is affiliated
with. A service consumer can evaluate the proposal and decide whether a
service offer is acceptable. When all roles are occupied and service types
match acceptable service offerings, smart contract negotiation begins. We
assume that neither side of the ongoing seafood delivery case has a desire
to disagree and bring the setup phase to a sudden end.

Instead, the buyer provides a counteroffer that introduces temperature-re-Instead, the buyer provides a counteroffer that introduces temperature-re-
lated obligations inside the containers where the seafood is stored. We
assume that shipping containers are equipped with Internet of Things (IoT)
sensors [15] that inform the sender, seller, and buyer in real time when a
temperature threshold violation occurs.

The buyer's counteroffer defines in this case that either there is a reduc-
tion in the price according to the reduced quality of the seafood. If the
change in temperature makes the seafood no longer fit for consumption,
the buyer has the right to refuse the purchase of the shipment upon arriv-
al. The counter offer is accepted by all other parties and a consensus is
produced, which is the prerequisite for the establishment of a contract.

 The smart contract is a coordinating agent from which a distributed gov- The smart contract is a coordinating agent from which a distributed gov-
ernance infrastructure (DGI) must be deduced. Therefore, each party to the
ongoing case receives a copy of the local contract from which a set of re-
spective obligations is deduced. For example, an obligation for the carrier
is that the temperature inside a seafood shipping container should never
be higher than 20°C. Obligations are observed by assigned monitors and
enterprise network model (BNMA) agents that connect to IoT sensors. All

to an emerging DGI.

For example, we assume peer-to-peer payment for Bitcoins that the buyer
must first buy with Euros. That purchase and payment through the bank1
For example, we assume peer-to-peer payment for Bitcoins that the buyer
must first buy with Euros. That purchase and payment through the bank1
involves a process comprising compliance steps and reporting as the gov-
ernment imposes regulations on the use of cryptocurrencies. To allow the
exchange of information between bank1 and the seller's bank2 , communi-
cation endpoints must be established. In this way, the management of the
seller's compliance data is automated.

t.me/SafeOneChain

Assuming a breach of the temperature threshold obligation occurs in the
fridge1 domain, an assigned BNMA escalates the event and the buyer
checks the severity of the breach. If the temperature violation lasts for a
period of time resulting in a decrease in seafood quality that still allows for
a successful sale for a lower price that the buyer tolerates, one response
may be for the latter to request additional cooling by a different company
that sneaks into the refrigerator paper1. Assuming that seafood is badly
spoiled and cannot be sold in the target country, the buyer triggers a dis-
ruptive setback that collapses the transaction. If the seafood shipment ar-
rives with the buyer in the agreed state and the payment to the seller
through the bank2 is completed, then the termination stage dissolves the
DGI and releases all collaborating parties. Below we give the relationships
between the detailed collaboration elements that coordinate the lifecycle
management of Figure 8.

VALUE TRANSFER PROTOCOL

An integral part of the SafeOne Chains framework is the notion of a value

VALUE TRANSFER PROTOCOL

An integral part of the SafeOne Chains framework is the notion of a value An integral part of the SafeOne Chains framework is the notion of a value
transfer protocol (VTP) that orchestrates information logistics between or-
ganizations and value transfers, in line with the value proposition shown in
Figure 7. Accordingly, Section 4.1 describes the relationship of the process
types that make up a VTP. Section 4.2 discusses the need for a specific
smart contract language with the utility for specifying VTP. Finally, Section
4.3 discusses the characteristics of a VTP-compatible language versus So-
lidity that uses Ethereum.

INTER-ORGANIZATIONALPROCESSES

The VTP comprises three different types of collaborative processes. Figure
9 shows a simplified BNM in BPMN notation for seafood delivery that intro-
duces Section 3. The BNM assumes that a sequence of threads are place-
holders for service types [12, 13] with labels indicating the roles of organiza-
tions.

SAFEONE CHAIN BNM.

We assume that the BNM also comprises tasks that connect service-type

SAFEONE CHAIN BNM.

We assume that the BNM also comprises tasks that connect service-type We assume that the BNM also comprises tasks that connect service-type
threads to establish the choreography control flow. For simplicity, Figure 9
depicts unlabeled choreography tasks along with an AND-split and -join.
The BNM starts with the seafood seller informing the bank to prepare for
an international transaction in currency and then the seafood is cooled
before a carrier ships to the destination. In the destination country, sea-
food is cooled again while a local bank processes the currency transaction
between the two countries. Finally, the buyer receives the seafood for local
sales. Figure 10. Outsourced service type process view.

t.me/SafeOneChain

For the BNM carrier subprocess, the assumption is that there are several
candidate organizations to fulfill the role of shellfish carrier. Figure 10
shows a simplified example for a lower-level refinement in the form of a
service type process view [12, 13]. The simplified process in Figure 10 as-
sumes that a carrier receives the seafood from the refrigerator in the
home country and charges the seller's bank. Next, three parallel branches
require temperature monitoring, preparation of delivery documents and
information to the cooling company in the target company to be per-
formed simultaneously. Only a candidate organization can become a ser-
vice provider operator that promises to adhere to this streamlined process.
Note that a collaboration center [30] can offer service type process views to
match the service type process with the corresponding service offering or-
ganizations. Figure 11. Local carrier contract.

As a third VTP element, Figure 11 shows the local contract that the carrier As a third VTP element, Figure 11 shows the local contract that the carrier
uses internally. Note that unlike the service type process view in Figure 10,
the local contract comprises two additional tasks with the labels informing
the buyer and charging the bank2. Therefore, the local contract is a sub-
class of the service type process view with respect to enactment behavior
[12, 13], that is, all process view tasks are experienced externally, while the
carrier has the option to insert additional hidden steps in a privacy-guaran-

terest for external viewing, and so on.

SAFEONE CHAINS SMART CONTRACT LANGUAGE

To support the VTP scenario of Section 4.1, the current strength of the To support the VTP scenario of Section 4.1, the current strength of the
smart contract lingua franca does not have the required level of utility
with respect to the concepts and properties contained. Instead, the goal is
to develop an SafeOne Chains Smart Contract Language (QSCL) and com-
piler that has comparatively better utility for VTP management. High-level
QSCL concepts and properties shown in Figure 12. The VTP scenario in Sec-
tion 4.1 resembles the eSourcing framework for which there is a dedicated

specified for the semantic web domain. We intend to map the concepts
and properties of eSML in the blockchain domain to create QSCL along
with a language compiler for a new SafeOne Chains virtual machine. Brief-
ly, as we refer the reader to [31] for more details, the properties of Figure 12
are organized along conceptual interrogatives. A QSCL instance resembles
a definition of BNM (Figure 9). Figure 12. Properties and concepts of the
future SafeOne Chains smart contract language [31]. The WHO QSCL con-
cept comprises constructs to uniquely define contracting parties along cept comprises constructs to uniquely define contracting parties along
with the resources involved and data definitions. The Where concept speci-
fies the business context and also the provisions of the legal context in
which a specific smart contract is maintained.

t.me/SafeOneChain

The What concept allows you to define the exchanged values and service
type process views (Figure 10) along with the lifecycle definitions for those
process views and also for elementary tasks, respectively. Therefore, in the
What part of a QSCL instance, you can define several service type process
views comparable to Figure 9.

Finally, conjunction constructs are exchange channels specifically defined Finally, conjunction constructs are exchange channels specifically defined
for the flow of data between organizations. Monitorability builds allow for a
flexible definition of dedicated task monitoring that uses a polling or mes-
saging principle.

COMPARATIVEDISCUSSION

Using smart contract ontology [31], we informally examined the suitability Using smart contract ontology [31], we informally examined the suitability
of existing robustness versus QSCL that we built for the SafeOne Chains
framework. As a general observation, Solidity is a language with a focus on
low-level blockchain manipulation commands with Syntax similar to JavaS-
cript. Still, it's possible to import third-party APIs and make calls to exter-
nal functions.

The so-called external functions in Solidity are part of a smart contract in-
terface that can be called from other contracts and through transactions.
Due to Turing's completeness of solidity, in principle it is possible to define
cumbersome supports for all the concepts and properties of the smart
contract ontology that QSCL embodies.

However, concepts such as pattern-based design, process knowledge, pro-However, concepts such as pattern-based design, process knowledge, pro-
cess matching, etc., are not adopted in any way in Solidity. Regarding the
invention of cumber some solutions, a recent publication of conference
papers [43] uses Solidity to demonstrate the feasibility of monitoring and
executing untrusted business processes in smart contracts. It should be
noted that the robustness has historically not been supported by formal
means of verification, unlike at the beginning of the QSCL design [31].

Without such formally verifiable expressiveness, it is not possible to know Without such formally verifiable expressiveness, it is not possible to know
before enactment whether a contract is correct and free of security issues.
A Security incident related to Solidity has only recently triggered the devel-
opment and application of verification tools such as Why, Solidifier or
Casper that is likely to lead to a change from proof-of-work to
proof-of-stake for Ethereum as a whole.

t.me/SafeOneChain

CONCLUSIONS

This whitepaper introduces the SafeOne Chains framework for a smart con-
tract blockchain technology solution. We show SafeOne Chains specific im-
plementation of transaction processing that uses proof-of-stake validation.
In addition, SafeOne Chain integrates the Ethereum virtual machine (EVM)
along with Bitcoin's unspent transaction outgoing protocol.

Please note that SafeOne Chains EVM is still consistently backward com-
patible. In addition, SafeOne Chains framework recognises that smart con-
tract lifecycle management is important to support proper security re-
search by collaborating parties. To support SafeOne Chains lifecycle man-
agement, the current lingua franca Solidity lacks suitability.

Consequently, SafeOne Chains emerging framework requires a new smart
contract language with an improved utility. The adoption of proof-of-stake
in SafeOne Chains constitutes a considerable saving of computational
effort over the Ethereum alternative that still uses proof of work.

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

http://why3.lri.fr/

https://hack.ether.camp/idea/solidifier: Formal Robustness Verification Pro-https://hack.ether.camp/idea/solidifier: Formal Robustness Verification Pro-
grams

http://www.coindesk.com/ethereum-casper-proof-stake-re-
write-rules-blockchain/

While Ethereum also plans to adopt proof-of-stake, it's unclear when such While Ethereum also plans to adopt proof-of-stake, it's unclear when such
a new version will be released. Also the use of unspent transaction outputs
is more scalable compared to Ethereum account management. In combi-
nation with simple payment verification, SafeOne Chain is already develop-
ing a smart contract mobile device solution.

While the non-scalablenon-scalable Ethereum solution does not allow for
mobile solutions, SafeOne Chain aims to achieve democratized and highly
distributed proof-of- stake transaction validation with its mobile strategy.

t.me/SafeOneChain

The SafeOne Chain framework has a clear understanding of the quality cri-
teria that future developments must satisfy. Regarding functional require-
ments, SafeOne Chain plans to develop an application layer for smart con-
tract lifecycle management. Most importantly, such lifecycle management
is important for investigating collaborating parties to reduce security
breaches such as those Ethereum recently experienced, resulting in multi-
plemultiple hardforks of the latter.

The value transfer protocol for information logistics at SafeOne Chain com-
prises a business network model for choreographing several collaborating
organizations. The latter can provide services with on-premises contracts
that must match the specified runtimeruntime behavior of the service
type process views in the enterprise network model. With a multi- layered
smart contract management layer, collaborating parties protect the priva-
cy of their trade secrets that represent a competitive advantage by hiding
extension steps in local contracts. In summary, the SafeOne Chains frame-
work recognizes that smart contracts are sociotechnicalsociotechnical arti-
facts that must also take into account the quality requirements essential
to achieve widespread adoption by users. Continuous real-life industry
projects with SafeOne Chains applications result in a continuous collection
of empirical requirements. The mobile strategy in support of highly distrib-
uted proof-of-stake transaction processing points to a significant break-
through in the state of the art. Still, SafeOne Chain also recognizes that
smart contract lifecycle management requires the development of applica-
tion layers with a sophisticated front-end user experience that current
solutions don't pay enough attention to.

REFERENCES

Text and technology details based on naur exhibit 2022.

1. A.M Antonopoulos. Dominating bitcoins, 2014.

2. I. Bentov, A. Gabizon and A. Mizrahi. Cryptocurrencieswithout proof of 2. I. Bentov, A. Gabizon and A. Mizrahi. Cryptocurrencieswithout proof of
work, pages 142-157. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

3. K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy and S.
ZanellaB'eguelin. Formal verification of smart contracts: Short paper. In
Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security, PLAS '16, pp. 91-96, New York, NY, USA, 2016. ACM.

4. A. Biryukov and D. Khovratovich. Equihash: Asymmetric proof of work 4. A. Biryukov and D. Khovratovich. Equihash: Asymmetric proof of work
based on the generalized birthday problem. Minutes of NDSŜ aA ̆Z16, Feb-
ruary 21–24, 2016, San Diego, CA, USA ISBN 1-891562-41-X, 2016.

t.me/SafeOneChain

5. B. Bisping, P.D. Brodmann, T. Jungnickel, C. Rickmann, H. Seidler, A.
Stuber, ̈A. Wilhelm-Weidner, K. Peters and U. Nestmann. Mechanical verifi-
cation of a constructive test for flp. In International Conference on Interac-
tive Theorem Proving, pages 107–122. Springer, 2016.

6. O. Bussmann. The Future of Finance: FinTech, Tech Disruption, and Or-
chestrating Innovation, pp. 473–486. Springer International Publishing,
Cham, 2017.

7. C. Cachin. Architecture of the hyperledger blockchain fabric. In Work-
shop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

8. K. Christidis and M. Devetsikiotis. Blockchains and smart contracts for
the Internet of Things. ACCESS IEEE, 4:2292–2303,2016.

9. L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos. Non-functional require-
ments in software engineering, volume 5. Springer Science & Business
Media, 2012.

10.K. Croman, C. Decker, I. Eyal, A.E. Gencer, A. Juels, A. Kosba, A. Miller, P.
Saxena, E. Shi, E. Gun Sirer, D. Song and R. Wattenhofer. ̈On Scaling Decen-
tralized Blockchains, pages 106–125. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2016.

11.N. Emmadi and H. Narumanchi. Reinforce the immutability of authorized
blockchains with keyless signature infrastructure. In Proceedings of the
18th International Conference on Distributed Computing and Networking,
ICDCN '17, pages 46:1–46:6, New York, NY, USA, 2017. ACM.

12.R. Eshuis, A. Norta, O. Kopp and E. Pitkanen. Outsourcing of services
with process views. IEEE Transactions on Services Computing, 99(Pre-
Prints):1, 2013.

13.R. Eshuis, A. Norta and R. Roulaux. Evolution of process views. Informa-
tion technology and software, 80:20 – 35, 2016.

14.D. Frey, M.X. Makkes, P.L. Roman, F. Ta ̈ıani and S. Voulgaris. Bringing
secure bitcoin transactions to your smartphone. In Proceedings of the 15th
International Workshop on Adaptive and Reflective Middleware, ARM 2016,
pages 3:1–3:6, New York, NY, USA, 2016. ACM.

15.J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami. Internet of Things 15.J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami. Internet of Things
(iot): A vision, architectural elements and future directions. Future Genera-
tion Computer Systems, 29(7):1645 – 1660, 2013.

t.me/SafeOneChain

16.A. Kiayias, I. Konstantinou, A. Russell, B. David and R. Oliynykov. A de-
monstrably secure proof-of-stake blockchain protocol , 2016.

17.G. Kotonya and I. Sommerville. Requirements engineering: processes
and techniques. Wiley Publishing, 1998.

18.L. Kutvonen, A. Norta and S. Ruohomaa. Management of commercial
transactions between companies in open service ecosystems. In Enterprise
Distributed Object Computing Conference (EDOC), 2012 IEEE 16th Interna-
tional, pp. 31–40. IEEE, 2012.

19.L. Luu, D.H. Chu, H. Olickel, P. Saxena and A. Hobor. Make smart con-
tracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS '16, pp. 254–269,2016.

20.L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert and P. Saxena. A
secure fragmentation protocol for open blockchains. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS '16, pages 17-30, New York, NY, USA, 2016. ACM.

21.J. Marshall. Modeling based on agents of emotional objectives in digital
media design projects. International Journal of People-Oriented Program-
ming (IJPOP), 3(1):44–59, 2014.

22.Business Process Model. Notation (bpmn) version 2.0. Object Manage-
ment Group Specification, 2011.http://www.bpmn.org.

23.S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

24.N.C. Narendra, A. Norta, M. Mahunnah, L. Ma and F.M. Maggi. Solid con-
flict management and resolution for collaborations between virtual compa-
nies. Computing and Service-Oriented Applications, 10(3):233–251, 2016.

25.A. Norta. Exploration of dynamic collaboration between inter-organiza-
tional business processes. Doctoral thesis, Eindhoven University of Technol-
ogy, Department of Information Systems , 2007.

26.A. Norta. Creation of Smart Contracting Collaborations for Decentralized
Autonomous Organizations, pages 3-17. Springer International Publishing,
Cham, 2015.

27.A. Norta. Establishing Distributed Governance Infrastructures for the
Enactment of Collaborations Among Organizations, pages 24–35. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

t.me/SafeOneChain

28.A. Norta, P. Grefen and N.C Narendra. A reference architecture for the
management of dynamic inter-organizational business processes. Data
and Knowledge Engineering, 91(0):52 – 89, 2014.

29.A. Norta and L. Kutvonen. A cloud hub for business process intermedia-29.A. Norta and L. Kutvonen. A cloud hub for business process intermedia-
tion as a service: a "meetup" platform that supports the discovery of
semi-automated partners with background checks for cross-enterprise col-
laboration. In SRII Global Conference (SRII), 2012 Annual, pp. 293–302, July
2012.

30.A. Norta and L. Kutvonen. A cloud hub for business process intermedia-
tion as a service: a "meetup" platform that supports the discovery of
semi-automated partners with background checks for cross-enterprise col-
laboration. Srii Annual Global Conference, 0:293–302,2012.

31.A. Norta, L. Ma, Y. Duan, A. Rull, M. Ko ̃lvart and K. Taveter. Properties of
the choreography and choreography language of eContractual towards
business collaboration between organizations. Journal of Internet Services
and Applications, 6(1):1–23, 2015.

32.A. Norta, A.B. Othman and K. Taveter. Conflict resolution lifecycles for 32.A. Norta, A.B. Othman and K. Taveter. Conflict resolution lifecycles for
the collaboration of autonomous decentralized governed organizations. In
Proceedings of the 2015 2Nd International Conference on Electronic Gover-
nance and Open Society: Challenges in Eurasia, EGOSE '15, pp. 244–257,
New York, NY, USA, 2015. ACM.

33.Aafaf Ouaddah, Anas Abou Elkalam and Abdellah Ait Ouahman. Towards 33.Aafaf Ouaddah, Anas Abou Elkalam and Abdellah Ait Ouahman. Towards
a new privacy-preserving access control model based on Blockchain tech-
nology in IoT, pages 523-533. Springer International Publishing, Cham, 2017.

34.E. Paja, A.K. Chopra and P. Giorgini. Specification based on the trust of
sociotechnical systems. Data and Knowledge Engineering, 87:339 – 353,
2013.

35.J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain 35.J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments, 2015.

36.M. Rosenfeld. Overview of colored coins. White paper, bitcoil. co. il, 2012.

37.Fr. Sergei. A probabilistic analysis of the nxt forging algorithm. Ledger,
1:69–83,2016.

38.L. Sterling and K. Taveter. The art of agent-oriented modeling. MIT Press,
2009.

t.me/SafeOneChain

39.T. Tenso, A. Norta and I. Vorontsova. Evaluating a new agile method of
requirements engineering: a case study. In Proceedings of the 11th Interna-
tional Conference on Evaluation of Novel Software Approaches to Software
Engineering - Volume 1: ENASE, pp. 156–163, 2016.

40.P Vasin. Blackcoinâ A ̆Zs proof-of-stake protocol v2, 2014.'

41.M. Vukoli'c. The search for a scalable blockchain fabric: proof of work vs.
bft replication. In International Workshop on Open Problems in Network
Security, pages 112–125. Springer, 2015.

42.M. Vukoli'c. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.
BFT Replication, pages 112-125. Springer International Publishing, Cham,
2016.

43.I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling. 43.I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev and J. Mendling.
Monitoring and execution of untrusted business processes using Block-
chain, pages 329–347. Springer International Publishing, Cham, 2016.

44.G. Wood.Ethereum: A decentralized and secure generalized transaction
ledger.

Ethereum Yellow Paper Project, 2014.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

